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Experimental determination of the equilibrium isotope effect for the dihydride/dihydrogen tautomerism (EIET)
in the Kubas complex W(CO)3(PCy3)2(η2-H2) has not yet been achieved because of the lack of vibrational
frequencies for the dihydride form. Even so, Bender, Kubas, Hoff, and co-workers3 have estimated a normal
EIET, which predicts that deuterium favors the classical site at 300 K. In this work, EIET for the Kubas
complex tautomerism is theoretically studied by using two levels of calculation. First, the standard harmonic
oscilator approach is used to obtain the harmonic partition functions and the corresponding harmonic EIET,
which turns out to be inverse (0.485 at 300 K). Next, anharmonicity is included in some normal modes in
order to obtain an improved EIET. Following a new scheme developed by our group in a previous work,5

DVR nuclear calculations over bidimensional potential energy surfaces are employed to obtain the associated
anharmonic partition functions and the corresponding anharmonic EIET, which turns out to be also inverse
(0.534 at 300 K). So, theoretical corrected EIET predicts that deuterium favors the nonclassical site at 300 K.

Introduction

Due to its important role in catalytic hydrogenation processes,
the coordination of H2 to a transition metal has been one of the
most studied phenomena in the recent organometallic chemistry.1

Depending on the nature of this interaction, two basic types of
compounds have been found: those where molecular H2

coordinates as a two-electron ligand (nonclassical dihydrogen
complexes) and those where the H-H bond has been broken
to give two one-electron ligands (classical dihydride complexes).
Dihydrogen complexes are often thought as intermediates of
an oxidative addition of the H2 to the metal , but today it is
accepted that in certain cases a tautomeric equilibrium can exist
between the dihydride and the dihydrogen forms (see Scheme
1).

Equilibrium isotope effects (EIE’s) for that tautomerism (eq
1) have been reported,2 but the conclusions diverge to such an
extent that, at the moment, no general rule exists concerning
whether deuterium favors the classical versus the nonclassical
site. Determination of more EIE’s would help to understand
this reaction, but experimental results in this field are not easy
to obtain and, as a consequence, only relatively limited
thermodynamic data are available. This is the case for one of
the Kubas complexes (the first isolated dihydrogen complexes),
whose EIE for the tautomerism has not been strictly resolved
because of the lack of experimental data.

Bender, Kubas, Hoff, and co-workers (BKH) have recently
studied3 the EIE on H2 binding in the dihydrogen complex
W(CO)3(PCy3)2(η2-H2). In that work the measured vibrational
frequencies arising from the corresponding infrared spectra are
used to obtain partition function ratios as described in the general
treatment of equilibrium isotope effects by Bigeleisen and
Goeppert-Mayer.4 Once they have the EIE for the H2 binding

in the Kubas complex, they also try to determine the EIE for
eq 1 (EIET). It can be defined as the quotient between the EIE
for the H2 binding in the dihydrogen form and the EIE for the
H2 binding in the dihydride form. Determining a generic EIET

is quite ambitious if we remind that, up to now, no regular
behavior has been found among all the studied complexes. To
overcome this impasse, BKH employ a particular strategy which
consists of assuming that the EIE for the addition of H2 to the
Vaska’s complex Ir(CO)Cl(Ph3)2 (0.46 at 300 K) is typical for
the (H)2MLn case and that the EIE for Kubas complex W(CO)3-
(PCy3)2(η2-H2) (0.78 at 300 K) is typical for the (H2)MLn case.
This allow them to estimate the EIE in eq 1, EIET ) EIE(2)/
EIE(4), and hence to predict in general a normal EIETsi.e.,
that deuterium favors the classical site at 300 K. Finally, they
try to test the so predicted EIET for the W(CO)3(PCy3)2(η2-H2)
tautomeric equilibrium, but such a validation cannot be achieved
because no vibrational frequencies for the dihydride form are
available.

SCHEME 1
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Starting from this point, our aim is to contribute to the
understanding of the dihydride/dihydrogen tautomerism in the
Kubas complex W(CO)3(PCy3)2(η2-H2) by theoretically obtain-
ing the EIET, strictly defined as EIE(2)/EIE(3). In a first step
we will calculate it within the harmonic approximation. After
that, we will try to improve the results by being more rigorous.
In a previous work5 of our group we concluded that anharmo-
nicity has to be taken into account in order to reproduce and
theoretically predict the experimental results concerning many
properties of dihydrogen and, probably, polyhydride complexes
especially in what refers to isotope effects. Then, in a second
step, we will include anharmonicity to correct some normal
modes in order to obtain a more accurate EIET. This anharmo-
nicity will be introduced by a new scheme derived from quantum
nuclear calculations which has been already successfully applied
to several dihydrogen complexes.5

Calculational Details

In this section we will present the scheme followed to obtain
the results of this study. At the same time, we will establish
the working conditions, that is, the models that have been
assumed, the methods that have been required, and the informa-
tion that has been borrowed from previous works. The whole
process can be divided in two steps: electronic structure
calculations; nuclear motion calculations. Both sets of computa-
tions are detailed here.

A. Electronic Structure Calculations. In a first step,
electronic structure calculations have been done to find the
geometry of the minimum energy structures, to compute its
molecular partition functions from the harmonic frequencies,
and to build up a sizable part of the potential energy surfaces
(PES). To save computational effort, the complex under study
has been modeled by turning the three cyclohexyl groups into
three hydrogen atoms.

All electronic structure calculations have been carried out with
the GAUSSIAN 98 series of programs.6 To solve the electronic
Schrödinger equation, the density-functional theory7 (DFT)
methodology has been used. This methodology meets the
requirements of high accuracy and reasonable cost and has been
employed with great success in the study of several organo-
metallic systems, including dihydrogen and polyhydride com-
plexes.8,9 The three-parameter hybrid functional of Becke and
the Lee, Yang, and Parr correlation functional, widely known
as Becke3LYP,10 has been used. Geometry optimizations have
been performed using the Schlegel gradient optimization
algorithm using redundant internal coordinates.11,12

To reduce the cost of the computations an effective core
operator has been used to replace the 60 innermost electrons of
the tungsten atom. For the 14 outer electrons of the metal atom
the basis set was that associated with the pseudopotential of
Hay and Wadt13 with a standard valence double-ê LANL2DZ
contraction.11 The basis set for the hydrogen atoms directly
attached to the metal was a double-ê supplemented with a
polarization p shell.14,15 A 6-31G basis set14 was used for the
H atoms attached to a P or a Catom, as well as for carbon and
oxygen atoms. The phosphorus atoms were described with the
6-31G(d) basis set.16

For each minimum energy structure analytical second deriva-
tives of the energy with respect to the Cartesian coordinates
have been computed to obtain the frequencies and eigenvectors
associated with each vibrational normal mode within the
harmonic approximation. For complexes described by means
of pseudopotentials this is a new feature included in GAUSSIAN

98.6 In this thermochemical calculation, molecular partition
functions have also been obtained at 1 atm and 300 K within
the ideal gas, rigid rotor, and harmonic oscillator models.

For the dihydrogen form of the studied complex, the
minimum energy structure and the harmonic molecular partition
functions for the two isotopic versions (H/D) have been taken
from a previous paper of our group.5 For the dihydride form,
the geometry for the minimum energy structure has been taken
from the authors of ref 17, but all the other magnitudes have
been calculated in this work. That dihydride structure accounts17

for both the spectroscopic and the thermodynamic experimental
data.

B. Nuclear Motion Calculations. In this second step, nuclear
motion calculations have been carried out to determine vibra-
tional (anharmonic) energy levels and their associated (anhar-
monic) molecular partition functions.

Anharmonic vibrational energy levels arise from the solution
(eigenvalues) of the nuclear Schro¨dinger equation over a suitable
PES built up from electronic calculations. Hence, previously
to the nuclear motion study, an adequate PES is required for
each minimum energy structure. For the dihydrogen complex,
a two-dimensional PES as a function of the interatomic distance
between the two hydrogen (deuterium) atoms of the H2 (D2)
unit of the complex and the distance between the metal atom
and the point halfway between those two hydrogen (deuterium)
atoms has been taken from our previous work.5 For the dihydride
complex a two-dimensional PES as a function of the interatomic
distance between the metal atom and one of the H(D) atoms
and the interatomic distance between the metal atom and the
other H(D) atom has been constructed. It has to be noted that
the two PES coordinates are different from those of the
dihydrogen form. This is because the molecular symmetry
between the two complexes is different (the criterion we have
used to choose these new coordinates is explained in the next
section). When the PES is calculated, global relaxation of the
rest of geometrical parameters has been allowed.

These two interatomic distances behave as orthogonal coor-
dinates, in such a way that no coupled terms between them
appear in the nuclear kinetic operator of the corresponding
nuclear Schro¨dinger equation; that is,

where x and y stand respectively for the H-H and W-H2

distances in the dihydrogen complex and W-HA and W-HB

distances in the dihydride complex.
To solve the nuclear Schro¨dinger equation the generic discrete

variable representation (DVR) proposed by Colbert and Miller18

has been used. This method has already been applied with
success in the field of organometallic chemistry.8,19 Computa-
tionally, the DVR has great advantages over the more traditional
variational basis representation, in which the energy levels are
obtained by diagonalization of the matrix representation of the
projection of the Hamiltonian operator on a given basis set. In
short, the DVR is a grid-point representation instead of a basis
set representation, and thus, it facilitates the calculation of the
potential energy integralsVij. In this representation, the potential
energy matrix is diagonal,

and the kinetic energy matrix is very simple,

T̂ ) -p2

2µx

∂
2

∂x2
+ -p2

2µy

∂
2

∂y2
(5)

Vii ′ ) δii 'V(xi) (6)
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leading to a very sparse Hamiltonian matrix easier to diagonalize
than those coming from a basis set representation,

Once the grid-point representation of the nuclear Hamiltonian
has been built up and diagonalized, the nuclear energy levels
obtained have been used to calculate the associated two-
dimensional anharmonic vibrational partition function as

wherekB is Boltzmann’s constant and the summatory extends
over all the significantly populated vibrational levels of the 2-D
PES.

The total vibrational partition function is then calculated by
assuming an independent normal mode framework for the rest
of the degrees of freedom (i.e. no mode-mode coupling). In
this case the vibrational partition function is the product ofQanh

with the individual partition functions corresponding to each
additional normal mode. To obtain these individual partition
functions, one-dimensional PES should be built up as a function
of each normal mode. Our transition-metal complex has 17
nuclei, which implies dealing with 45 vibrtional modes. Ap-
plication of this procedure to each normal mode is a task out
of reach. To simplify the calculations we have assumed that all
the modes except the ones included inQanhbehave as harmonic
oscillators. This assumption is reasonable if most of the
anharmonic correction comes from the two modes chosen to
define the 2-D PES and, in any case, provides a first approxima-
tion to the total anharmonic vibrational partition function of
the molecule.

Results and Discussion

In this section we will present the results obtained from the
electronic and nuclear calculations. As we outlined in the
Introduction, the discussion will be centered on the understand-
ing of the EIE and it will be presented as follows: In a first
step, we will consider the harmonic EIE obtained by the standard
approach, and in a second step, we will analyze the anharmonic
EIE obtained by following our new procedure.

According to the well-known formulas of the statistical
thermodinamics,20 the deuterium equilibrium isotope effect has
been calculated as the equilibrium constant of the equilibrium
displayed in eq 1. This equilibrium can also be described as eq
2/eq 3, and hence, the EIET has been obtained and presented as
EIE(2)/EIE(3), that is, as the quotient between EIE for the
dihydrogen formation and the EIE for the dihydride formation.

A. Harmonic EIE. First of all, within the harmonic ap-
proximation, we have used the molecular partition functions
provided by GAUSSIAN 98 for each chemical species in Figure
1 to evaluate the harmonic EIE’s. In addition, we have
decomposed each EIE as the product of three factors: the
translational-rotational contribution (TRANSROT); the factor
corresponding to the contribution of the ground vibrational
states, that is, only including the zero-point energy levels (ZPE);
the factor that appears when the excited vibrational energy levels
are taken into account (EXC). The corresponding results are
shown in Table 1.

The DFT-calculated harmonic EIE for the dihydrogen forma-
tion turns out to be inverse, although numerically is somewhat
lesser (that is to say, the isotope effect turns out to be more
intense) than the value calculated by BKH3 from the infrared
spectra. The difference stems fundamentally from the ZPE
factor, which is the main responsible of the inverse behavior,
but that variation is not large enough to be considered a
qualitative disaccord. On the other hand, the dihydride formation
hardly gives harmonic isotope effect. This is a little surprising
if we think that the dihydride complex is almost the same
molecule as the dihydrogen one. What has changed? The reason
seems to reside on a structural alteration. The dihydrogen
structure has aC2V geometry. In turn, the dihydride structure
can be described as a pentagonal-bipyramidalCs complex with
axial carbonyls and the two hydrides lying in the equatorial plane
being separated by a phosphine ligand17 (see Figure 1). The
P-W-P angle (136.6˚) seems large enough to accommodate
encumbered phosphines such as PCy3. In that structure, the two
H’s cannot be considered as a H2 unity, and hence, the H-H
stretching as such is not a symmetry coordinate contributing to
a normal mode anymore. Another result of that coordination
change is that the hydrogen motion appears to be more spread
out among the normal modes. It participates in a larger number
of normal modes, and furthermore, it is more coupled with the
motion of the rest of the atoms of the molecule. As a
consequence, the relative contribution of the H motion in the
dihydride vibrations is less than in the dihydrogen vibrations,
and therefore, the normal modes are, in general, less sensitive
to the isotopic substitution. That is, the EIE is less important.

Finally, we obtain an inverse EIET (EIE for the tautomerism)
that differs from the normal EIE predicted by BKH3, at least
within the harmonic approximation. This is not an inconsistency
if we bear in mind that they estimate EIET as EIE(2)/EIE(4),
that is, mixing two different complexes: W(CO)3(PCy3)2(η2-
H2) as a typical dihydrogen and (H)2Ir(CO)Cl(PPh3)2 as a typical
dihydride.

B. Anharmonic EIE. As we have previously seen, the first
thing we need to do to be able to calculate the anharmonic EIE
is to choose which normal modes are to be corrected. A priori,
it is not possible to know with certainty which are the most
anharmonic normal modes in a molecule, but if we focus on
the normal modes which can influence the EIE, we obviously
have to consider those associated with the dihydrogen or
dihydride ligand.

In the dihydrogen complex the major anharmonicity effect
is probably related to the H-H stretching. This motion and the

Figure 1. Relevant symmetry coordinates associated with the dihy-
drogen and the dihydride complexes.

Tii ′ )
p2(-1)i-i′

2µx∆x2 {π2/3 i ) i′

2

(i - i′)2 i * i′ } (7)

Hij,i 'j' ) Tii 'δjj ' + Tjj 'δii ' + δii 'δjj 'V(xi, yj) (8)

Qanh) ∑
j

e-Ej/kBT (9)
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W-H2 stretching are the two A1 symmetry coordinates associ-
ated with the dihydrogen ligand5 and are pictured in Figure 1.
Then, the A1 normal modes derived from these symmetry
coordinates have to be considered as anharmonic modes in the
sense defined above. In addition, since that anharmonicity
couples significantly the two modes of the same symmertry,
the independent normal mode framework has been assumed
neglecting all the mode-mode couplings but the coupling
between the two A1 modes that has not been separated. On the
other hand, in the dihydride complex the reorganization of the
ligands leads to a loss of symmetry and, hence, to a change in
the normal modes. Since there is a phosphine between, the two
H’s behave as independent ligands and not as a H2-bound
molecule. For that reason H-H stretching is not a representative
component of the normal modes in the dihydride complex, and
consequently, it has not been used as a symmetry coordinate.
Among the normal modes that include the motion of the two
hydrogen atoms, those where heavy atom motions are negligible
have been chosen as the anharmonic modes to be corrected
(Figure 1) and, as in the dihydrogen case, not to be separated
by the independent normal mode framework. In both dihydrogen
and dihydride cases, the two normal modes chosen have been
studied together over a two-dimensional PES.

The two-dimensional PES for the dihydrogen complex was
already presented in a previous paper as a function of the two
symmetry coordinates.5 A collection of 120 electronic structure
calculations, each corresponding to a different set of H-H and
W-H2 distances, covered ranges from 0.6 to 2.0 Å for the H-H
distance and from 1.4 to 2.5 Å for the W-H2 distance. The
resulting points were fitted into a two-dimensional cubic splines
functional form,21 which is a smooth and continuous function.
Figure 2 depicts the two-dimensional PES as a contour plot.5

For the dihydride complex a two-dimensional PES has been
built up by calculating 56 points, each one corresponding to a
different set of W-HA and W-HB distances, covering ranges
from 1.5 to 2.2 Å for the W-HA distance and from 1.5 to 2.1
Å for the W-HB distance. These 56 points are necessary to
cover the PES until an energy of at least 10 kcal/mol above the
minimum is reached. Since the two hydride ligands are not
equivalent, the extent of the W-HA distance and the W-HB

distance is not exactly the same. It has to be noted that, in this
case, the symmetry coordinates used to represent the anharmonic
normal modes do not coincide with the axes of the bidimensional
PES but with its two diagonals. It has been necessary to expand
this PES made of electronic structure calculations. The reason
is that DVR results are sometimes difficult to converge due to
the fictitious energy gap present at the edge of the PES (the
method works as if there were an infinite potential wall at the
border). To save computational effort, this enlargement has been
done by using a two-dimensional analytic harmonic potential
that generates the harmonic frequencies of the two corrected
normal modes. The anharmonicity which can affect the EIE is
that of the region next to the minimum. Therefore, the use of
this supplementary harmonic potential is not incompatible with
the introduction of anharmonicity. Figure 3 depicts the resulting
two-dimensional PES as a contour plot.

Comparison between Figures 2 and 3 discloses some remark-
able differences regarding the shape of the two PES in the region
of the minima. The dihydride complex presents a typical
harmonic pattern with the two normal modes, symmetric and
antisymmetric HA-M-HB stretching, being the sum and the
subtraction of the two W-H distances respectively (that is, the

TABLE 1: Harmonic EIE’s and Contributions to Them a

eq 2
H2 + (D2)-WLn h D2 + (H2)-WLn

eq 3
H2 + (D)2-WLn h D2 + (H)2-WLn

eq 1
(D2)-WLn + (H)2-WLn h (H2)-WLn + (D)2WLn

TRANSROT 5.519 (5.77) 5.543 0.996
ZPE 0.131 (0.20) 0.254 0.514
EXC 0.675 (0.67) 0.712 0.948
EIE 0.486 (0.78) 1.002 0.485

a Numbers in parentheses correspond to the values calculated by Bender, Kubas, Hoff, and co-workers3 from the infrared spectra.

Figure 2. Contour plot of the two-dimensional potential energy surface
for the dihydrogen complex W(CO)3(PH3)2(η2-H2). Distances are given
in Å. Energy contours appear every 5 kcal/mol. The arrows indicate
the position of the minimum energy structure (d(H-H) ) 0.832 Å
andd(W-H2) ) 1.872 Å).

Figure 3. Contour plot of the two-dimensional potential energy surface
for the dihydride complex W(CO)3(PH3)2(H)2. Distances are given in
Å. Energy contours appear every 10 kcal/mol. The arrows indicate the
position of the minimum energy structure (d(W-HA) ) 1.788 Å and
d(W-HB) ) 1.753 Å).
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two diagonals of the PES in Figure 3). In view of this shape,
we can expect that the introduction of anharmonicity will not
change significantly the EIE results. Conversely, the potential
energy valley for the dihydrogen complex is almost parallel to
the W-H2 axis with a trend to curve along the H-H direction
as the W-H2 distance shortens (Figure 2). As a consequence,
the two normal modes of A1 symmetry, although mixed to some
extent (as already pointed out by BKH3), can still be identified
respectively with the two A1 symmetry coordinates. That is to
say, one normal mode is basically the H-H stretching and the
other one is essentially the symmetric M-H2 stretching. Unlike
the dihydride, this energy valley shows some anharmonic
character, and hence, in this case we can expect that the
introduction of anharmonicity do will change the EIE results.

Once the potential energy surfaces have been obtained, the
corresponding nuclear Schro¨dinger equations can be solved
using the DVR method. Prior to that, a certain reduced mass
has to be assigned to each degree of freedom in the Hamiltonian.
As in our previous works,7,22 the reduced masses for the motion
along the coordinates have been calculated (for the perprotio
complexes) as

for the dihydrogen complex and

for the dihydride complex. Note that the reduced masses of the
dideuterated complexes can be calculated in an analogous way.
Then, the matrix representation of the nuclear Hamiltonian over
a rectangular grid of equally spaced points has been constructed.
Different sizes of each grid have been tested until convergence
of the energy levels has been achieved. The characteristics of
the final grids chosen for the different systems have been as
follows: 35 × 27 ) 945 for both the perprotio and the
dideuterated dihydrogen complexes and 35× 35 ) 1225 for
both the perprotio and the dideuterated dihydride complexes
(the format used is the following: number of points along the
x coordinate× number of points along they coordinate) total
number of points). Diagonalization of the corresponding ma-
trixes provides the sets of vibrational wave functions (eigen-
vectors) and anharmonic energy levels (eigenvalues). These
energy levels permit the calculation of the anharmonic vibra-
tional partition function of each molecule according to the
procedure outlined in the previous section so that the anharmonic
EIE’s are obtained. The corresponding anharmonic EIE’s are
shown in Table 2.

Table 2 exhibits the anharmonic EIE’s and their decomposi-
tion in factors (evidently the TRANSROT contribution is the
same as in Table 1). Comparison of Tables 1 and 2 shows that
anharmonicity does not significantly alter the EXC factor. The
important changes only concern the ZPE factor. For the
dihydride, no changes appear in the anharmonic EIE(3), which
means that the harmonic approximation is valid to study the
thermochemistry of this complex. For the dihydrogen complex,
instead, anharmonicity augments slightly the ZPE contribution
and, therefore, the EIE(2). The anharmonic EIE(2), still clearly
inverse, is somewhat closer to the experimental values than the
harmonic EIE(2). If one takes into account the range of
uncertainty of the experimental values3 (0.78 from infrared
spectra or 0.70( 0.15 from displacement of N2) and that
anharmonicity has been only partially incorporated, the agree-
ment is rather good. As we saw in our previous work,
anharmonicity tends to favor the addition of H2 because it
weakens the lowering of the vibrational energy levels due to
the isotopic substitution. The larger the anharmonicity of the
normal modes sensitive to the isotopic substitution in the
dihydrogen complex, the smaller the gap between the equivalent
HH and DD vibrational energy levels. Along the addition in eq
2, the change in the HH/DD zero-point energy gap for the
normal mode corresponding originally to the H-H (D-D)
stretching in the free hydrogen molecule gives a normal ZPE
factor (a value greater than unity). On the contrary, conversion
of the 5 translational and rotational modes in free hydrogen to
vibrational normal modes in the dihydrogen complex leads to
an inverse ZPE factor (a value smaller than unity). As a
consequence of all this, anharmonicity increases the numerical
value of the ZPE factor associated with the dihydrogen ligand
(the normal and inverse factors become more normal and less
inverse, respectively), so tending to produce a normal EIE.

The anharmonicity of the dihydrogen complex is reflected
in the anharmonic EIET for the tautomerism. As in the harmonic
results, anharmonic EIET turns out to be inverse, although in a
less extent.

Conclusions

In this work we have theoretically studied the equilibrium
isotope effect for the dihydride/dihydrogen tautomerism (EIET)
in the Kubas complex W(CO)3(PCy3)2(η2-H2). Experimental
determination of this magnitude has not been achieved due to
the lack of vibrational frequencies for the dihydride form. There
is only an estimation by Bender, Kubas, Hoff, and co-workers3

that predicts a normal EIET, that is, that deuterium favors the
classical site at 300 K.

We have first calculated the harmonic EIET arising from the
standard thermodynamic analysis (within the ideal gas, rigid
rotor, and harmonic oscilator models). Prior to that it has been
necessary to characterize the geometry of the minimum energy
structures and to compute its molecular partition functions.
These electronic DFT calculations have given an inverse EIET

) 0.485 at 300 K. In view of the difference from the predicted
normal behavior, a deeper treatment has been done in order to

TABLE 2: Anharmonic EIE’s (See Text) and Contributions to Thema

eq 2
H2 + (D2)-WLn h D2 + (H2)-WLn

eq 3
H2 + (D)2-WLn h D2 + (H)2-WLn

eq 1
(D2)-WLn + (H)2-WLn h (H2)-WLn + (D)2WLn

TRANSROT 5.519 (5.77) 5.543 0.996
ZPE 0.143 (0.20) 0.254 0.563
EXC 0.676 (0.67) 0.710 0.952
EIE 0.534 (0.78) 1.001 0.534

a Numbers in parentheses correspond to the values calculated by Bender, Kubas, Hoff, and co-workers3 from the infrared spectra.

1
µd(H-H)

) 1
mHA

+ 1
mHB

1
µd(M-H2)

) 1
mH2

+ 1
m[ML n]

(10)

1
µd(M-HA)

) 1
mHA

+ 1
m[ML nHB]

1
µd(M-HB)

) 1
mHB

+ 1
m[ML nHA]

(11)

4680 J. Phys. Chem. A, Vol. 105, No. 19, 2001 Torres et al.



obtain a more accurated EIET. Beyond the harmonic approach,
nuclear calculations over bidimensional potential energy surfaces
have been performed. Particularly, DVR methodology has been
used to obtain the corresponding vibrational energy levels of
each structure, and finally, following a new scheme developed
by our group in a previous work,5 anharmonic partition functions
have been obtained and used to compute the corrected EIET.
These nuclear calculations have given again an inverse EIET )
0.534 at 300 K. Therefore, although being less inverse than the
harmonic result, the anharmonic EIET also indicates that
deuterium favors the nonclassical site at 300 K. This result
contrasts with the small normal kinetic isotope effect (KIE) for
conversion of the dihydride to the dihydrogen tautomers
measured by Hoff and co-workers.23 However, it has to be
realized that the KIE (a kinetic magnitude) and its corresponding
EIE (a thermodynamic magnitude) can behave in a different
way.

The conclusion outlined above for the Kubas complex is not
a general rule which can be applied to any dihydride/dihydrogen
tautomerism. The EIET has been rigorously calculated here only
for the Kubas complex. Actually, several experimental EIET’s
have been reported2 and conclusions diverge from one complex
to another. It seems that this is such an intricate chemical process
that no direct extrapolation would be valid to make predictions
for whatever dihydride/dihydrogen tautomerism at whatever
temperature. With the aim of understanding the dihydride/
dihydrogen tautomerism, additional experimental and theoretical
studies would be necessary. Work on this topic is now in
progress in our laboratory.

Acknowledgment. Financial support from the DGESIC
through Project PB98-0915 and the use of the computational
facilities of the CESCA and CEPBA coordinated by the C4 are
gratefully acknowledged.

References and Notes

(1) Heinekey, D. M.; Oldham, W. J., Jr.Chem. ReV. 1993, 93, 913.
(2) (a) Luo, X.-L.; Crabtree, R. H.J. Am. Chem. Soc.1990, 112, 6912.

(b) Haward, M. T.; George, M. W.; Hamley, P.; Poliakoff, M.J. Chem.
Soc., Chem. Commun.1991, 1101. (c) Gusev, D. G.; Nietlispach, D.;
Eremenko, I. L.; Berke, H.Inorg. Chem.1993, 32, 3628. (d) Henderson,
R. A.; Oglieve, K. E. J. Chem. Soc., Dalton. Trans.1993, 3431. (e)
Heinekey, D. M.; Oldham, W. J., Jr.J. Am. Chem. Soc.1994, 116, 3137.

(3) Bender, B. R.; Kubas, G. J.; Jones, L. H.; Swanson, B. I.; Eckert,
J.; Capps, K. B.; Hoff, C. D.J. Am. Chem. Soc.1997, 119, 9179.

(4) Bigeleisen, J.; Goeppert-Mayer, M.J. Chem. Phys.1947, 15, 261.
(5) Torres, L.; Gelabert, R.; Moreno, M.; Lluch, J. M.J. Phys. Chem.

A 2000, 104, 7898.
(6) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,

M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann,

R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K.
N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi,
R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.;
Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.
V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Kamaromi, I.;
Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.;
Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.;
Replogle, E. S.; Pople, J. A.Gaussian 98; Gaussian Inc.: Pittsburgh, PA,
1998.

(7) Parr, R. G.; Yang, W.Density-Functional Theory of Atoms and
Molecules; Oxford University Press: Oxford, U.K., 1989.

(8) (a) Gelabert, R.; Moreno, M.; Lluch, J. M.; Lledo´s, A.J. Am. Chem.
Soc.1997, 119, 9840. (b) Gelabert, R.; Moreno, M.; Lluch, J. M.; Lledo´s,
A. J. Am. Chem. Soc.1998, 120, 8168.

(9) (a) Backsay, G. B.; Bytheway, I.; Hush, N. S.J. Am. Chem. Soc.
1996, 118, 3753. (b) Bytheway, I.; Backsay, G. B.; Hush, N. S.J. Phys.
Chem.1996, 100, 6023. (c) Maseras, F.; Lledo´s, A.; Costas, M.; Poblet, J.
M. Organometallics1996, 15, 2947. (d) Li, J.; Dickson, R. M.; Ziegler, T.
J. Am. Chem. Soc.1995, 117, 11482. (e) Li, J.; Ziegler, T.Organometallics
1996, 15, 3844. (f) Camanyes, S.; Maseras, F.; Moreno, M.; Lledo´s, A.;
Lluch, J. M.; Bertra´n, J.J. Am. Chem. Soc.1996, 118, 4617. (g) Gelabert,
R.; Moreno, M.; Lluch, J. M.; Lledo´s, A. Organometallics1997, 16, 3805.

(10) (a) Lee, C.; Yang, W.; Parr, R. G.Phys. ReV. B 1988, 37, 785. (b)
Becke, A. D.J. Chem. Phys.1993, 98, 5648.

(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson,
G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-
Gordon, M.; Gonzalez, C.; Pople, J. A.Gaussian 94; Gaussian Inc.:
Pittsburgh, PA, 1995.

(12) Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J.J. Comput.
Chem.1996, 17, 49.

(13) Hay, P. J.; Wadt, W. R.J. Chem. Phys.1985, 82, 299.
(14) (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A.J. Chem. Phys.1972,

56, 2257. (b) Hariharan, P. C.; Pople, J. A.Theor. Chim. Acta1973, 28,
213.

(15) Hariharan, P. C.; Pople, J. A.Theor. Chim. Acta1973, 28, 213.
(16) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon,

M. S.; DeFrees, D. J.; Pople, J. A.J. Chem. Phys.1982, 77, 3654.
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